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Abstract Shallow landslides induced by heavy rainfall

events represent one of the most disastrous hazards in

mountainous regions because of their high frequency and

rapid mobility. Recent advancements in the availability and

accessibility of remote sensing data, including topography,

land cover and precipitation products, allow landslide

hazard assessment to be considered at larger spatial scales.

A theoretical framework for a landslide forecasting system

was prototyped in this study using several remotely sensed

and surface parameters. The applied physical model

SLope-Infiltration-Distributed Equilibrium (SLIDE) takes

into account some simplified hypotheses on water infiltra-

tion and defines a direct relation between factor of safety

and the rainfall depth on an infinite slope. This prototype

model is applied to a case study in Honduras during Hur-

ricane Mitch in 1998. Two study areas were selected where

a high density of shallow landslides occurred, covering

approximately 1,200 km2. The results were quantitatively

evaluated using landslide inventory data compiled by the

United States Geological Survey (USGS) following Hur-

ricane Mitch’s landfall. The agreement between the SLIDE

modeling results and landslide observations demonstrates

good predictive skill and suggests that this framework

could serve as a potential tool for the future early landslide

warning systems. Results show that within the two study

areas, the values of rates of successful estimation of slope

failure locations reached as high as 78 and 75%, while the

error indices were 35 and 49%. Despite positive model

performance, the SLIDE model is limited by several

assumptions including using general parameter calibration

rather than in situ tests and neglecting geologic informa-

tion. Advantages and limitations of this physically based

model are discussed with respect to future applications of

landslide assessment and prediction over large scales.

Keywords Landslide � Hurricane Mitch � Hazard

prediction � Remote sensing

Introduction

Rainfall-induced landslides pose significant threats to

human lives and property worldwide (Hong et al. 2006).

Overpopulation, deforestation, mining, and uncontrolled

land-use for agricultural and transportation purposes,

increasingly put large numbers of people at risk from

landslides (Boebel et al. 2006, Sidle and Ochiai 2006).

It is important to approach landslide susceptibility,

hazard, and risk assessment at the appropriate spatial scales

to inform policy decisions and proper planning for miti-

gating risk. Landslide disaster preparedness and forecasting
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systems require knowledge of the physical mechanisms

influencing landsliding, information on geotechnical com-

position, and landslide inventory data.

Recent approaches to forecast landslide potential

include empirical models that identify of rainfall intensities

and duration required to trigger landslides (e.g. Dai et al.

2002, Hong and Adler 2007). These empirical models

provide little theoretical basis for understanding how

landslides might respond to hydrologic processes (Iverson

2000); whereas physically based landslide models consider

the physical mechanisms influencing slope instability to

assess landslide hazard, using a range of topographic,

geologic, and hydrologic parameters (Dietrich et al. 1995;

Wu and Sidle 1995; Baum et al. 2002; Iverson 2000; Lu

and Godt 2008; Godt et al. 2009). These physical models

generally employ high-resolution surface feature data, in

situ geotechnical information, rainfall measurements at the

land surface, and detailed landslide inventories. Such

information is frequently unavailable at larger spatial

scales due to non-uniform surface investigation and sparse

landslide inventory data (Kirschbaum et al. 2011).

Recent examinations of remote sensing data sets offer an

opportunity to enhance the sparse field-based landslide

inventory data sets for hazard forecasting and mapping at

larger spatial scales. Liao et al. (2010) developed an early

landslide warning system by incorporating a physically

based model to assess landslide hazard in Indonesia

experimentally. In this study, a simplified physical model,

SLope-Infiltration-Distributed Equilibrium (SLIDE) has

been developed to identify the spatial and temporal dis-

tribution of landslides induced by heavy rainfall, employ-

ing a range of remotely sensed and in situ surface data. A

primary reason for attempting to develop a forecasting

model from the remote sensing data products is the

potential for providing larger scale landslide maps within

regions with a dearth of field-based physical data. Calcu-

lating the landslide hazard of an entire study region at once

allows for the consistent analysis of rainfall’s impact on the

slope instability.

This article describes the approach for landslide fore-

casting using Hurricane Mitch as a case study within two

areas in Honduras. Hurricane Mitch made landfall in late

October, 1998 and dropped historic amounts of rainfall in

Central America. The hurricane and related landslides

killed an estimated 5,657 people, injuring another 12,272

according to the National Emergency Cabinet. Figure 1

shows the storm path and an example of the shallow

landslides triggered in Honduras. This article describes the

framework of the SLIDE model and remotely sensed and in

situ data sets employed; it then describes the application of

the model in Honduras; and finally it quantitatively eval-

uates the forecasting results and discusses the advantage

and limitations of the model.

Methodology

Approaches for landslide forecast

Three major steps to develope a forecasting model are

discussed: (1) data collection and parameter initialization;

(2) model development based on infinite-slope equilibrium

equations; and (3) test and evaluation of the model. The

flow chart of the forecasting model is shown in Fig. 2.

Fig. 1 a High concentrations of debris flows in Honduras following the Hurricane Mitch (Harp et al. 2002); b Aerial view and c path of

Hurricane Mitch in the Caribbean (Credit: NOAA, October 26, 1998)
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Available data and parameter initialization

Landslide occurrence depends on complex interactions

among a large number of factors, mainly including slope,

soil properties, lithology, and land cover. With increasing

frequency, remote sensing data sets have been used to

develop susceptibility maps regionally and globally. Hong

et al. (2007) had used some of the aforementioned remote

sensing data to derive a global landslide susceptibility map.

In this research, elevation, land cover, and precipitation

data sets were all derived from satellites.

Elevation Elevation data were retrieved from the

Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER), Global Digital Elevation Model

(GDEM), which was developed jointly by the Ministry of

Economy, Trade, and Industry (METI) of Japan and the

United States NASA (https://wist.echo.nasa.gov/*wist/

api/imswelcome/). Topographic properties were derived

from a 30-m ASTER DEM. There have been several

studies suggesting the spatial resolution of DEM is critical

for landslide modeling and the current 30-m resolution can

be insufficient for hydrologically driven landslide estima-

tion (Zhang and Montgomery 1994; Claessens et al. 2005).

Although only the 30-m DEM from SRTM available over

large area in Honduras, the authors encourage higher res-

olution DEM should be used in the future study when it

becomes available.

Soil Soil parameter values were determined from soil

types provided by the Food and Agriculture Organization

of the United Nations (FAO; http://www.fao.org/AG/agl/

agll/dsmw.htm) and the Moderate Resolution Imaging

Spectroradiometer (MODIS) land classification map. There

are 16 soil types with referenced values provided. In this

study, soil information referring to FAO map is sandy clay

and clay. Since it is limited to get field tests and obtain

detailed soil information, the soil parameters were derived

by adjusting through a procedure of back analysis within a

certain range, respectively.

Land cover The University of Maryland’s 1 km global

land cover classification is produced by using data for

1992–1993 from the Advanced Very High Resolution

Radiometer (AVHRR, Hansen et al. 2000). There are 12

classes in total and a certain cohesion value of vegetation

will be added to soil cohesion in slope stability calculation.

Schmidt et al. published the method to obtain values of root

cohesion for different species of vegetation and a summary

table of selected root cohesion from different sources. This

method was referenced after obtaining the land cover

classification validated by public vegetation information.

Precipitation The spatial distribution, duration, and

intensity of precipitation play an important role in trig-

gering landslides. The precipitation data used in this study

are obtained from the NASA Tropical Rainfall Measuring

Mission (TRMM) Multi-Satellite Precipitation Analysis

(TMPA) (Huffman et al. 2007), which provides calibrated

sequential scheme for combining precipitation from mul-

tiple satellite and gauge analyses at a resolution of

0.25� 9 0.25� over the latitude band 50�N–50�S every 3 h.

The real-time rainfall is available on the NASA TRMM

web site (http://trmm.gsfc.nasa.gov).

Landslide inventory data This event-based inventory

was compiled in the months following the Hurricane Mitch

in November, 1998 by USGS. The hurricane triggered

more than 500,000 landslides throughout the Honduras,

95% of which were debris flows with various failure plane

depths including shallow landslides and deep-seated land-

slides, the most typical events being relatively shallow

failures (Harp et al. 2002; Kirschbaum 2010). It is a

supreme mass movement event of the century and cast

disastrous impact over the whole country.

SLIDE model

The SLIDE model integrates the contribution of apparent

cohesion to the shear strength of the soil and the soil depth

Fig. 2 Conceptual framework of a physical model for forecasting of

rainfall-induced shallow landslides

Fig. 3 Infiltration processes and infinite landslide model
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influenced by infiltration (Fig. 3). W is vertical weight of

the soil layer above the failure surface, rn is normal

effective force, sn is shear force and Ti is the time step of

infiltration. Factor of Safety (FS) is expressed as the ratio

of shear strength to shear stress to calculate slope stability.

A slope is considered stable when FS [ 1 and a landslide is

predicted when FS nears or drops below 1. In this study of

shallow landslides, an infinite-slope equation is translated

as the cohesion and frictional components:

FS ðZt; tÞ ¼
c0 þ c/ðtÞ

csZt sin a cos a
þ tan u

tan a
ð1Þ

where c0 is soil cohesion, incorporating a value for root

zone cohesion, cs is the unit weight of soil, a is slope angle,

and u is soil friction angle. c/(t) represents the apparent

cohesion related the matric suction, which in turn, depends

on the degree of saturation of the soil (Montrasio and

Valentino 2008), written as:

c/ðtÞ ¼ A � Sr � ð1� SrÞk � ð1� mtÞo ð2Þ

where A is a parameter depending on the kind of soil and is

linked to the peak shear stress at failure, k and q are numerical

parameters which allow estimation of the peak of apparent

cohesion related to Sr, the degree of saturation of the soil. mt

represents the dimensionless thickness of the infiltrated

layer, which is a fractional parameter between 0 and 1:

mt ¼
PT

t¼1 It

n � Zt � ð1� SrÞ
ð3Þ

in which It is rain intensity, n is the porosity and Zt is the

soil depth at time t, which is determined by the infiltration

process:

Zt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � Ks � Hc � t

hn � h0

r

ð4Þ

where Ks is saturated hydraulic conductivity, Hc is capil-

lary pressure, t is time, hn is water content of the saturated

soil, and h0 is initial water content of the soil.

Case study

Study area

Intense rainfall from Hurricane Mitch from October 27–31,

1998 exceeded 900 mm within some regions of Honduras

and triggered in excess of 50,000 landslides throughout the

country (Harp et al. 2002). Two study areas were selected

to compute the FS maps, each which cover approximately

600 km2 over the south coast of Honduras (Fig. 4). In the

selected study areas, the highest recorded rainfall intensity

was 12 mm/h, with an accumulation of close to 200 mm in

Fig. 4 Two study areas in

Honduras for Hurricane Mitch

in 1998 (above banner),

zooming in from the Central

America (bottom banner)
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5 days (Fig. 5). This region was selected for analysis

because it currently has one of the largest and most

regionally extensive landslide inventory data sets compiled

following Hurricane Mitch.

Parameter values for the model are summarized in

Table 1. As soil values are the most difficult parameter to

assess, we used the general soil information from Table 1

after adjusting through a procedure of back analysis within a

certain range. Furthermore, as Honduras has a tropical cli-

mate and the study areas are covered by Latin species of pine

woods, the root cohesion values added to the total cohesion

are assumed to range from 3.7 to 6.4 (Schmidt et al. 2001;

Waldron et al. 1983). Due to the large geographic area

considered as well as the limited high-resolution data sets for

this region, we make several assumptions in order to eval-

uate the SLIDE model in this area

• Detailed geological information was not included in

this model due to the limitations of the simplified

physical model and lack of homogeneous information

at realistic spatial resolutions over the large study area.

However, this information may be incorporated into the

model when data become available.

• The layer of the soil subject to sliding is generally

characterized by a certain degree of heterogeneity and can

be affected by macropores in the soil caused by various

living organisms (Montrasio and Valentino 2008). In this

study, we consider the soil properties in the layer to be

homogeneous and neglect preferential flow.

• Run-off and evapo-transpiration were neglected in the

water balance. Therefore, we assume that all rainfall

infiltrates into the soil, which is not physically realistic.

However, the system allows only an infiltration amount

approximately equal the saturated hydraulic conductiv-

ity in maximum.

All above assumptions were made to make the model

easily applicable over larger areas and able to employ

various remotely sensed data sets.
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Fig. 5 Precipitation of

Hurricane Mitch in 1998 for the

selected study areas

Table 1 Parameters, symbols, and values are used for SLIDE

application

Property Symbol Unit Value

Slope angle a Deg Varies

Soil depth Z M [L] Varies

Soil type 1-16 Unit less Sandy clay/

Clay

Land Cover LC Unit less 6, 7, 11

Coefficients k, q Unit less 0.4, 3.4

Friction u Deg 17–22

Cohesion (root

included)

c0 KPa [M/LT2] 15–24

Coefficient A KPa [M/LT2] 20

Unit weight of soil cs KN/m3[M/

L2T2]

20

Porosity n 1 0.40–0.60

Water content h0, hn 1 0.2, 0.6

Degree of saturation Sr 1 0.2

Hydrologic conductivity Ks cm/h [L/T] 1.00–4.00

Capillary Hc mm [L] 50

Fig. 6 Four quantitative evaluation indices from Fawcett (2006)
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Results and evaluation

Using TMPA data as the rainfall input, the parameterized

SLIDE model was run at 3-hourly resolution and a FS

value was generated throughout the Hurricane Mitch event

from Nov. 25, 1998 to Dec. 5, 1998 at every 30-m grid cell.

Figure 7a and b illustrates the unstable areas computed by

the SLIDE model for the two study areas over the Hurri-

cane Mitch event. Unstable areas (FS B 1) are shown in

red and observed landslides are shown in black.

Firstly, the results were evaluated by comparing the

unstable maps with observation by four indices from

Fawcett (2006). Labels {Y, N} were used for the class

forecasts produced by the physical model in 30 m grids.

The labels {p, n} were used for the class of observation in

the field. In the class of observation, landslide areas were

computed within a radius of 500 m radius. There are four

possible outcomes when classifying a grid from the

unstable map. If a computed unstable grid is inside the

observed landslide area, it is counted as true positive (tp;

also called hit or rates of successful estimation of slope

failure locations); if it is outside the observed landslide

area, it is counted as false positives (fp; also called false

alarm). If a computed stable grid matches an observed

landslide grid, it is counted as false negative; otherwise, it

is called true negatives. Figure 6 shows the classification

matrix and the equations of several indices. The true pos-

itives rate defines how well the predicted results agree with

the observations. The tp rates are 78% for the Fig. 7a, and

75% for Fig. 7b. The false positives rate indicates the

tradeoff between the predicted results and observations.

The fp rates are 1 and 6%, respectively. The error rate is

Fig. 7 Instability maps of

landslides produced by SLIDE

for the study areas a and b
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defined as the portion of the computed unstable grids that

did not contain observed landslides (Sorbino et al. 2010).

The SLIDE model provides a value of error rate of 35% in

Fig. 7a while error rate is 49% in Fig. 7b. Accuracy rep-

resents the level of agreement between the forecast and the

observations of landslides. The accuracy values are 98%

for the study area a and 92% for the study area b. The

precision means positive predictive value. The precisions

for two areas are 65% in Fig. 7a and 51% in Fig. 7b. All

the statistics values are listed in Table 2.

The model forecasts show good agreement with the

mapped inventory over the two study areas. However, the

model over predicts the landslide areas, particularly in the

west part of Fig. 7a. In Fig. 7b, the predicted landslide

areas by the model are much larger than observed areas. In

general, the model forecast result in larger hazard zones

than what is observed, resulting in an overestimation of

hazard areas. This is consistent with other studies per-

formed at regional scales (Nadim et al. 2006).

Discussion

This study tests the model performance for a specific event

in order to test the forecast capabilities of the forecast

system. Quantitative evaluation of the landslide Hurricane

Mitch case study indicates that the model demonstrates

good predictive skill when compared to the landslide

inventory over the two study areas. The tp rates for the two

study areas are 78 and 75%, respectively, while the fp rates

are as low as 1 and 6%. The low fp rates come from the

accurate prediction of stable areas by the physical model.

The high tp rates and low fp rates demonstrate the potential

to employ a physically based model for the forecast of

landslide disasters using remote sensing and geospatial

data sets over larger regions; particularly in regions where

comprehensive field data and fine-scale precipitation

observations and forecasts are available. The remotely

sensed data products used in the SLIDE model describe the

most important factors influencing the slope movement,

which serves to simplify the model calculations and

decrease the computational load.

However, over-prediction is clearly indicated by the

error rates which are 35 and 49%, though it is possibly due

to a number of model assumptions and the limitation of

physical models. Furthermore, there are several limitations

of simplifying the physically based relationships and

employing remotely sensed, rather than in situ data prod-

ucts. These shortcomings can limit model accuracy and

should be improved for future applications, these include:

(1) Uniform geological structures of slopes are assumed

as parameterization, which could lead to potential

errors of modeling results. Neglecting various geo-

logical features within the model calculations greatly

limits the forecast ability of the physical models. In the

future application of the other study area, information

of geological structures from high risk prone area

could better enhance the hazard assessments.

(2) It decreases the accuracy of modeling results by

applying same soil values to the regional-scale

modeling. A same type of soil from different places

reveals various physical and mechanical properties in

a certain range, regardless of the vegetation roots and

the rainfall infiltration. In this study, the same soil

under different stratigraphic conditions was set to be

homogeneous by inputting a same set of physical and

mechanical values. This hypothesized procedure

would reduce the spatial variances. A study of the

empirical soil properties would improve this problem.

(3) Higher spatiotemporal resolution of satellite rainfall,

DEMs, and accurately validated remote sensing soil

information are expected to better account for land-

slide-prone regions. In situ tests of hotspot areas

would provide better soil values for input and

improve the performance of model forecast. The

higher spatial resolution of DEM would be used to

derive better topographical features of slope, resulting

in reducing the over-prediction of failure locations by

the model. However, the remote sensing could not get

soil-depth information to date, thus effects of topo-

graphic convergence in soil–bedrock interface geom-

etry and bedrock fracture flow, which have been

shown to be important for simulating slope failure

initiation (Ebel et al. 2008), were not accounted for in

this study.

(4) Over-prediction and error rates of landslides are

difficult to reduce due to the geomorphologic varia-

tions, and different triggering mechanisms. Further-

more, landslide-prone areas can also largely be

affected by anthropogenic impacts such as improper

Table 2 Evaluation statistics for instability maps of landslides produced by SLIDE

Indices True positive rate (%) False positive rate (%) Accuracy (%) Precision (%) Error rate (%)

Study area (a) 78 1 98 65 35

Study area (b) 75 6 92 51 49

Perfect Values 100 0 100 100 0
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building and roads, which have not been incorporated

within the physically based model approach. As only

an extreme event is presented, the areas identified as

‘‘unstable’’ and computed by error indices could still

be unstable and triggered in future events.

While there are several limiting factors affecting the

accuracy of model forecasting, the SLIDE model shows

potential as a landslides forecasting tool over larger

regions. The model may be suitable to be incorporated into

future real-time early landslide warning system when high

quality data sets are available.

Conclusions

A physically based landslide forecast model SLIDE has

been presented for assessment of shallow landslides trig-

gered during Hurricane Mitch in Honduras in 1998. A

number of remotely sensed data sets have been applied in

the model to analyze landslide hazard over a study area of

approximately 1,200 km2. The major remotely sensed data

sets used to set the landslides forecasting system includes

an ASTER DEM for deriving geospatial features, the

University of Maryland’s land cover classification for

adjusting soil cohesions, and the NASA TRMM precipi-

tation for driving the hydrologic response of the system.

Empirical geotechnical parameters were referenced to

estimate the FAO soil values used in the forecast. The

results highlight a rate of successful estimation of slope

failure locations of 78% and an error index of 35%. Similar

acceptable results were obtained for the other study area,

with a rate of successful estimation of slope failure loca-

tions of 75% and an error index of 49%. The evaluation of

the results reveals that error indices were probably due to

the unavoidable over-predictions. In the work presented

here, the SLIDE model shows promise for integration into

regional-scale early-warning systems for landslides trig-

gered by extreme precipitation events.
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